多變數函數,及它們的偏導數
8.5 偏導數
你應該還記得,函數f(x)的導數就代表y = f(x)圖形的切線(如圖8.12所示)。
現在我們要把這項觀念,推廣到具有兩個變數的函數f(x, y)。 怎麼辦呢?讓我們假設,你現在正站在聖母峰的山腰上,身上是昂貴得出奇的登山裝跟裝備,有著閃亮耀眼的時髦花樣。當時你在專櫃店試穿這套服裝時,覺得自己酷得不得了,然而現在,你感覺不到酷,而是寒冷徹骨,因為冰冷的寒風從外套的下緣縫中鑽了進來,原來是你忘了把其中一條高科技束帶紮緊。
你被綁在一根繩索的一端,繩索懸掛在你頭頂上方那個卡在岩縫裡的帶環鋼釘上,而繩索的另一端,則掌握在芬蘭籍隊長的手中。他這時正拚命向你打手勢,並且用你壓根兒聽不懂的芬蘭話向你猛喊;似乎從這次探險一開始,你對他的唯一印象,就是見他拚命向你打手勢,並且用你聽不懂的芬蘭話向你猛喊。這時候風愈刮愈大,氣溫也似乎在疾速下降,你不由得再一次自問,明明可以無憂無慮的躺在游泳池面上,啜飲著熱帶果汁,幹嘛要發神經參加什麼高山探險隊?
你猜測,也許這位芬蘭隊長看時候不早,應該轉回基地營區,喝杯熱可可加上軟棉糖,以禦寒氣,所以你自以為是的向東跨出一小步。哪裡知道你這一腳踩了個空,因為在你所踏出的方向,根本沒有落腳處:下一個落腳處是在負z方向的200英尺外!幸好你頭頂上的鋼釘沒有鬆脫,你才沒摔下去,結果整個人懸在半空中。這時你的芬蘭隊長喊聲更急促響亮,同時死命的拽住繩索,額頭上的青筋都冒了出來。
當然,剛才這幕驚險鏡頭之所以發生,問題出在山峰的東側坡度太陡。你定了定神,然後拿出吃奶的力氣,好不容易才收回了你那隻差一點造成千古恨的腳。驚魂甫定,仔細向下看清楚之後,你這才發現芬蘭隊長的手勢,原來是在叫你向正北方移動前進,因為那一側的坡度沒那麼大,一步跨出去,只不過向負z軸方向踏出2英尺而已。
這讓你思想起大學時代修過的多變數微積分。你記起了,當你在三維空間曲面上的一點,就跟你現在站在山腰上的情形一樣,你周圍有不只一個斜率。事實上,不管你面朝任何一個方向,都可能有一個不同的斜率,也就是在該方向上的切線的斜率。 假設這座山的表面,可由函數z = f(x, y)的圖形來表示,其中的正x軸指向正東方,而正y軸指向正北方(如圖8.13)。
─摘自《微積分之倚天寶劍》第8章