第10章 何謂導數?
窮則變,變則通
好了,現在我們終於講到了微積分觀念的精髓,這可是進入微積分初步裡面最重要的一個單元。何謂導數?為何大夥把它看得那麼重要?又為什麼幾乎每一個修過微積分的人,都對這個簡單的觀念聞之色變?
說穿了,導數這玩意兒真的相當簡單,一言以蔽之,就是「斜率」。
例題(抓羊)
假設你即將背著一隻打了麻醉藥的羊,走上山坡。我們先把山腳下位置的座標設定為(0, 0),即原點,當你從山腳走上山坡的時候,你的x座標跟y座標都同時隨著你的移動而改變,事實上都是在增加。讓我們取h(x)為在x點上的山坡高度,所以函數h(x)的圖形,也就是滿足方程式y = h(x)的點所連成的曲線,就是這個山坡的輪廓。
由於你是背著一隻羊爬坡,所以你最關切的是你走過的任意一點的陡峭程度,因為愈是陡峭,坡就愈難爬。函數h(x)的導數,正是這個山坡在x點的陡峭程度,我們以h'(x)來表示。
譬如說,我們假設h'(10) = 1/6,以此表示你在x方向上走了10英尺之後,到達的新位置的陡峭程度等於1/6。而所謂的陡峭程度1/6,是指你在水平方向每移動1英尺(差不多一小步的距離),你必能垂直向上移動2英寸,這樣的坡度還不算陡。
不過,如果我們另外假設h'(20) = 5,那表示當你在x方向上走了20英尺時,會發現你腳下的地點非常陡峭。有多陡呢?相當於每向水平方向橫移1英尺,你就能上升5英尺!這時你恐怕需要一套登山裝備,另外還需要替那頭羊準備一個絞盤。
如果再假設h'(30) = -2呢?那就是說當x = 30時,你腳底下的地面是每橫移1英尺,就會在垂直方向移動-2英尺。換句話說,你正在下坡,這時你只要讓那頭羊滾下山坡就得啦。
當然,導數的功用不限於用來把麻醉過的羊扛上山坡,它們還可以應用在更為一般的狀況下,比如麻醉過的綿羊啦,麻醉過的土撥鼠啦,甚至麻醉過的小型美洲水牛等等。除了對上述用來量測一隻羊的海拔高度的函數外,導數更可以用在許多其他的函數上。