These notes form the contents of a Nachdiplomvorlesung given at the Forschungs-institut f/ir Mathematik of the EidgenSssische Technische Hochschule, Ziirich from November, 1984 to February,
1985. Prof. K. Chandrasekharan and Prof. J/irgen Moser have encouraged me to write them up for inclusion in the series, published by Birkhauser, of notes of these courses at the ETH.
目錄
1. algebraic functions
2. riemann surfaces
3. the sheaf of germs of holomorphic functions
4. the riemann surface of an algebraic function
5. sheaves
6. vector bundles, line bundles and divisors
7. finiteness theorems
8. the dolbeault isomorphism
9. weyl’’s lemma and the serre duality theorem
10. the riemann-roch theorem and some applications
11. further properties of compact riemann surfaces
12. hypereuiptic curves and the canonical map
13. some geometry of curves in projective space
14. bilinear relations
15. the jacobian and abel’’s theorem
16. the riemann theta function
17. the theta divisor
18. torelli’’s theorem
19. riemann’’s theorem on the singularities of θ
references