隨著深度學習的飛速發展,電腦視覺技術取得了令人矚目的成果,尤其是物體檢測這一基礎又核心的分支,誕生了眾多經典演算法,在自動駕駛、智慧醫療、智慧安防及搜索娛樂等多個領域都得到了廣泛應用。與此同時,誕生於2017年的PyTorch框架,憑藉其簡潔優雅、靈活易上手等優點,給開發人員留下了深刻的印象。
目前,國內圖書市場上已經出版了幾本PyTorch方面的圖書,但大多數圖書停留在淺層的概念與簡單示例的講解上,缺乏實用性,而且也沒有一本系統講解PyTorch物體檢測方面的圖書。因此,圖書市場上迫切需要一本系統介紹PyTorch物體檢測技術的書籍。這便是筆者寫作《深度學習之PyTorch物體檢測實戰》的初衷。
《深度學習之PyTorch物體檢測實戰》是國內原創圖書市場上首部系統介紹物體檢測技術的圖書。書中利用PyTorch深度學習框架,從代碼層面講解了FasterRCNN、SSD及YOLO這三大經典框架的相關知識,並進一步介紹了物體檢測的細節與難點問題,讓讀者可以全面、深入、透徹地理解物體檢測的種種細節,並能真正提升實戰能力,從而將這些技術靈活地應用到實際開發中,享受深度學習帶來的快樂。
《深度學習之PyTorch物體檢測實戰》特色
1.系統介紹了PyTorch物體檢測技術
《深度學習之PyTorch物體檢測實戰》深入物體檢測這一基礎又核心的技術,從其誕生背景、主流演算法、難點問題、發展趨勢等多個角度詳細介紹了物體檢測知識,並結合代碼給出了多個演算法的實現。
- 從代碼角度詳細介紹了物體檢測的三大演算法
《深度學習之PyTorch物體檢測實戰》介紹了FasterRCNN、SSD及YOLO這三個影響深遠的檢測演算法,從代碼層面詳細介紹了它們所實現的每一個細節與難點,並進行了優缺點分析,而且給出了多種優化演算法。
- 涵蓋所有主流的物體檢測演算法
《深度學習之PyTorch物體檢測實戰》幾乎涵蓋所有主流的物體檢測演算法,包括VGGNet、ResNet、FPN、DenseNet和DetNet等卷積基礎網路,以及從FasterRCNN、HyperNet、MaskRCNN、SSD、RefineDet、YOLOv1到YOLOv3、RetinaNet、CornerNet和CenterNet等物體檢測演算法,呈現給讀者一個完整的知識體系。
- 給出了多個實際的物體檢測實例,有很強的實用性
《深度學習之PyTorch物體檢測實戰》對PyTorch的知識體系進行了較為精煉的介紹,還結合物體檢測演算法重點介紹了PyTorch實現的多個物體檢測實例。因此《深度學習之PyTorch物體檢測實戰》不僅是一本很好的PyTorch框架學習書籍,更是一本PyTorch物體檢測實戰寶典。
- 對物體檢測技術常見的細節、難點及發展做了詳細分析
《深度學習之PyTorch物體檢測實戰》不僅對物體檢測技術的熱門話題做了詳細分析,例如非極大值抑制、樣本不均衡、模型過擬合、多尺度檢測、物體擁擠與遮擋等,而且對各種細節與常見問題做了詳細分析,並給出了多種解決方法。
《深度學習之PyTorch物體檢測實戰》內容
第1篇物體檢測基礎知識
本篇涵蓋第1~3章,介紹了物體檢測技術與PyTorch框架的背景知識與必備的基礎知識。主要內容包括物體檢測技術的背景與發展;物體檢測的多種有效工具;PyTorch背景知識與基礎知識;多種基礎卷積神經網路的相關知識與具體實現等。掌握本篇內容,可以為讀者進一步學習物體檢測技術奠定基礎。
第2篇物體檢測經典框架
本篇涵蓋第4~6章,介紹了FasterRCNN、SSD與YOLO三大經典演算法的思想與實現。主要內容包括FasterRCNN兩階演算法的思想;錨框Anchor的意義與實現;FasterRCNN的多種改進演算法;SSD單階演算法的思想與實現;SSD的資料增強方法及多種改進演算法;YOLO單階演算法的三個版本演變過程及具體實現等。掌握本篇內容,可以讓讀者從代碼角度學習物體檢測的種種細節。
第3篇物體檢測的難點與發展
本篇涵蓋第7~10章,介紹了物體檢測技術的細節、難點及未來發展。主要內容包括針對模型加速的多種輕量化網路思想與實現;非極大值抑制;樣本不均衡及模型過擬合等物體檢測細節問題的背景知識與解決方法;多尺度、擁擠與遮擋等物體檢測難點問題的背景知識與解決方法;多種擺脫錨框的檢測演算法;物體檢測的未來發展趨勢等。掌握本篇內容,可以讓讀者更加深入地學習物體檢測的相關技術。
《深度學習之PyTorch物體檢測實戰》讀者物件
需要全面學習物體檢測技術的人員;
PyTorch框架愛好者和研究者;
電腦視覺從業人員與研究者;
深度學習從業人員與愛好者;
自動駕駛、智慧安防等領域的開發人員;
人工智慧相關產業的從業人員;
電腦、機器人等專業的高校學生。
閱讀建議
沒有物體檢測與PyTorch基礎的讀者,建議從第1章順次閱讀並演練每一個實例。
有一定PyTorch與物體檢測基礎的讀者,可以根據實際情況有重點地選擇閱讀各個演算法的細節。
對於每一個檢測演算法,建議讀者先閱讀一下原論文,多思考演算法設計的動機與目的,並重點思考如何用代碼實現,這會加深讀者對檢測演算法的理解。原論文的下載地址和《深度學習之PyTorch物體檢測實戰》原始程式碼檔一起提供。
多思考各種物體檢測演算法的優缺點、相互之間的聯繫與區別,以及可以優化和改進的細節等,形成完整的知識體系樹,這樣會進一步加深讀者對知識的理解。
配書資源獲取方式
《深度學習之PyTorch物體檢測實戰》涉及的全部原始程式碼都放在了GitHub上,需要讀者自行下載。下載地址見圖書。
有些章節的代碼較多,但在書中僅給出了重要的片段代碼,完整代碼以GitHub上的代碼為准。
另外,讀者也可以登錄華章公司的網站www.hzbook.com,搜索到《深度學習之PyTorch物體檢測實戰》,然後按一下“資料下載”按鈕,即可在本書頁面上找到相關的下載連結。
致謝
《深度學習之PyTorch物體檢測實戰》的編寫得到了許多人的幫助。可以說,《深度學習之PyTorch物體檢測實戰》是多人共同努力的結晶。感謝北京源智天下科技有限公司的王蕾,她在稿件整理方面幫我做了大量的工作!感謝王田苗教授、陶吉博士、夏添博士、侯濤剛博士、嚴德培、單增光、王策、鄂俊光、李成、丁甯、付航、高鵬、朱本金、彭強、王粟瑤、張騰、王兆瑋、黃彬效和拓萬琛等人,他們對《深度學習之PyTorch物體檢測實戰》提出了許多寶貴的意見和建議!感謝我的女朋友及家人,他們一直以來都對我鼓勵有加,給我寫作《深度學習之PyTorch物體檢測實戰》以最大的動力!感謝為《深度學習之PyTorch物體檢測實戰》付出辛勤工作的每一位編輯,他們認真、細緻的工作讓《深度學習之PyTorch物體檢測實戰》品質提高不少!
……