內容簡介

本書是系統闡述組合數學基礎、理論、方法和實例的優秀教材,出版30多年來多次改版,被MIT、哥倫比亞大學、UIUC、威斯康星大學等眾多國外高校采用,對國內外組合數學教學產生了較大影響,也是相關學科的主要參考文獻之一。

本書側重于組合數學的概念和思想。包括鴿巢原理、計數技術、排列組合、P61ya計數法、二項式系數、容斥原理、生成函數和遞推關系以及組合結構(匹配、實驗設計、圖)等。深入淺出地表達了作者對該領域全面和深刻的理解。除包含第4版中的內容外,本版又進行了更新,增加了有限概率、匹配數等內容。此外,各章均包含大量練習題,並在書末給出了參考答案與提示。


Richard A.Brualdi美國威斯康星大學麥迪遜分校數學系教授(現已退休),曾任該系主任多年。他的研究方向包括組合數學、圖論、線性代數和矩陣理論.編碼理論等。Brualdi教授的學術活動非常豐富,擔任過多種學術期刊的主編。2000年由于“在組合數學研究中所做出的杰出終身成就”而獲得組合數學及其應用學會頒發的歐拉獎章。
 

目錄

Preface
1 What Is Combinatorics?
1.1 Example:Perfect Covers of Chessboards
1.2 Example:Magic Squares
1.3 Example:The Four-Color Problem
1.4 Example:The Problem of the 36 OfFicers
1.5 ,Example:Shortest-Route Problem
1.6 Example:Mutually Overlapping Circles
1.7 Example:The Game of Nim
1.8 Exercises
2 Permutations and Combinations
2.1 Four Basic Counting Principles
2.2 Permutations of Sets
2.3 Combinations(Subsets)of Sets
2.4 Permutations of Multisets
2.5 Combinations of Multisets
2.6 Finite Probability
2.7 Exercises
3 The Pigeonhole Principle
3.1 Pigeonhole Principle:Simple Form
3.2 Pigeonhole Principle:Strong Form
3.3 A Theorem of Ramsey
3.4 Exercises
4 Generating Permutations and Combinations
4.1 Generating Permutations
4.2 Inversions in Permutations
4.3 Generating Combinations
4.4 Generating r-Subsets
4.5 Partial Orders and Equivalence Relations
4.6 Exercises
5 The Binomial Coefficients
5.1 Pascal’s Triangle
5.2 The Binomial Theorem
5.3 Unimodality of Binomial Coefficients
5.4 The Multinomial Theorem
5.5 Newton’s Binomial Theorem
5.6 More on Partially Ordered Sets
5.7 Exercises
6 The Inclusion-Exclusion Principle and Applications
6.1 The Inclusion-Exclusion Principle
6.2 Combinations with Repetition
6.3 Derangements
6.4 Permutations with Forbidden Positions
6.5 Another Forbidden Position Problem
6.6 M6bius Inversion
6.7 Exercises
7 Recurrence Relations and Generating Functions
7.1 Some Number Sequences
7.2 Generating Functions
7.3 Exponential Generating Functions
7.4 Solving Linear Homogeneous Recurrence Relations
7.5 Nonhomogeneous Recurrence Relations
7.6 A Geometry Example
7.7 Exercises
8 Special Counting Sequences
8.1 Catalan Numbers
8.2 Difference Sequences and Stirling Numbers
8.3 Partition Numbers
8.4 A Geometric Problem
8.5 Lattice Paths and Schr6der Numbers
8.6 Exercises
9 Systems of Distinct Representatives
9.1 General Problem Formulation
9.2 Existence of SDRs
9.3 Stable Marriages
9.4 Exercises
10 Combinatorial Designs
10.1 Modular Arithmetic
10.2 Block Designs
10.3 Steiner Triple Systems
10.4 Latin Squares
10.5 Exercises
11 Introduction to Graph Theory
11.1 Basic Properties
11.2 Eulerian Trails
11.3 Hamilton Paths and Cycles
11.4 Bipartite Multigraphs
11.5 Trees
11.6 The Shannon Switching Game
11.7 More on Trees
11.8 Exercises
12 More on Graph Theory
12.1 Chromatic Number
12.2 Plane and Planar Graphs
12.3 A Five-Color Theorem
12.4 lndependence Number and Clique Number
12.5 Matching Number
12.6 Connectivity
12.7 Exercises
13 Digraphs and Networks
13.1 Digraphs
13.2 Networks
13.3 Matchings in Bipartite Graphs Revisited
13.4 Exercises
14 Polya Counting
14.1 Permutation and Symmetry Groups
14.2 Burnside’s Theorem
14.3 Polya’s Counting Formula
14.4 Exercises
Answers and Hints to Exercises
Bibliography
Index
網路書店 類別 折扣 價格
  1. 新書
    87
    $256