推薦序
洪萬生
幫助學生體會數學(美)無所不在
這一兩年來,「另類的」數學普及書籍成為出版商的注目焦點。以今年出版的作品為例,除了數學小說(mathematical
fiction)文類的繼續風行之外,像《這才是數學》這一類的書寫,高舉數學教育的基進(radical)改革旗號,內容基調卻回歸古典(classical),總是帶給我們一種「今昔時空」疊置,不知身心何所依違之感。不過,也正因為這種既在地又抽離的處境,讓我們可以從容地體會數學的如何有趣,甚至如何有用。
本書《數學也可以這樣學》就是另一本這樣一類的數學普及作品,儘管其中包括作者教給七、八年級學生的主要數學課程內容。作者約翰・布雷克伍德任教於澳洲史泰納學校――華德福實驗教育系統的一環,因而本書也被納入華德福教育資源(Waldorf Education
Resources)叢書。平心而論,作者的數學觀點不如《這才是數學》的作者來得基進,不過,堅持數學的某些進路與練習,則並無二致。而所有這些,則都指向數學的有趣面向。譬如說吧,本書的英文原版書名《 Mathematics in Nature, Space and
Time》,就是企圖說明數學在天生自然領域、在空間脈絡以及在時間的流變中的無所不在。作者更是利用本書例證,強調「數學是描述世界的一種語言――上帝所創造的一種語言」。對他來說,數學是一種真正的門道或法門,「引領我們走向大自然之工作室(workshop of
nature)的漸增理解」,因為「吾人可以相信不僅存有諸神,而且也可以對祂們#如何#運作產生興趣」。換言之,數學在大自然界中的無所不在,都是上帝的神工,而理解或鑑賞它們的不凡與美妙,則是榮耀上帝的一條進路。
數學實作(mathematical practice)可以「接近神蹟」的華德福教育哲學主張,正是十八世紀西方自然神學(natural theology)的現代翻版。顯然,這種主張就是將數學實作類比為一種「靈修」的過程。因為誠如史泰納(Rudolf Steiner)在他的《靈性活動的哲學》所指出,「有了(數學)思維活動,我們已經掌握了靈性的一個小小的角落。」
既然是靈修,那麼,數學實作回歸古典,依循古代哲人的進路,似乎是勢所必然。這或許也解釋了何以作者那麼鍾愛希臘古典幾何學中的尺規作圖。事實上,本書第一章一開始的練習一和二,就依序是(在給定線段上)作垂線,以及二等分角的尺規作圖。而全書的尺規作圖練習,則多達十幾個。可見,作者在繪製幾何圖形時,就十分貼近地呼應希臘古典幾何的「精確」要求。
希臘數學家,比如最具代表性的歐幾里得,就視「精確圖形」與「尺規作圖」是一體兩面。所謂尺規作圖,是指運用圓規與沒有刻度的直尺,在有限多次的步驟中,畫出一個圖形。這是古希臘歐幾里得在他的經典《幾何原本》中,所允許使用的作圖方法。按照他的主張,只要不是運用這種方法所作出來的圖形,就不能稱之為存在,因而也就不是數學研究的合法對象。這種合法性(legitimacy)由於結合了嚴格的邏輯證明,使得圖形的「精確」顯得理所當然,從而它們的「存在」也就無庸置疑了。
現在,讓我們簡要介紹本書內容。按照知識內容來分類,各章主題依序是幾何、數論(number theory)、柏拉圖立體,以及克卜勒三大行星運動定律。
有關最後一章的科學史敘事,作者認為克卜勒的不朽成就,完全在於他「對大自然的節奏理解」,因而可以「成為真正的自然科學」。此外,作者還針對人體(小宇宙)和大宇宙的節奏之對應關係,指出人類可視為巨觀中的微觀,於是,「男人是由上帝的形象造成的」,乃成為數學靈修的最後徹悟。
至於本書前三章內容都曾經在《幾何原本》出現,再度地見證這部偉大經典在作者心目中的地位。事實上,《幾何原本》討論的部份主題如下:第 I、III 及 IV 冊是平面幾何;第 XI-XII 冊是立體幾何;第 VII-IX
冊是數論,還有,第XIII一冊,亦即最後一冊,則是柏拉圖立體。附帶一提,這最後一冊的內容與前面各章幾何學(無論平面或立體)之關連,看起來在融貫性(coherence)方面上較為不足;亦即,這五個柏拉圖正立方體的存在,顯然並非歐氏幾何學知識系統不可或缺的一環,儘管本冊的所有命題之證明,當然還是完全依賴前面(相關)的命題。對於這樣的安排,數學史家猜測這是歐幾里得為了向柏拉圖「交心」,因為在有關知識本質方面,《幾何原本》被認為比較偏向亞里斯多德,他認為數學是被發明的,不過,他的師傅柏拉圖卻主張數學是被發現的,兩者明顯地有所不同。如將柏拉圖在《蒂邁歐篇》(Timaeus)中所塑造的造物主,轉換為基督教的上帝,那麼,作者的數學觀貼近柏拉圖主義,也就不言可喻了。
柏拉圖數學哲學所引伸出來的認知方法當然有其侷限,因為他的《米諾篇》(Meno)基於人生而有知,而認為知識是吾人只需經由「啟發」即可恢復的「前世」記憶(recollecting)。不過,本書所布置的數學練習,卻大大彌補了這個不足。經由摺紙及立體模型之(動手)製作,再輔以本書一再出現的尺規作圖,作者具體呈現了數學知識是吾人經由實作、再發明(re-inventing)而獲得的過程。這種「默合」亞里斯多德的現身說法,對於現代的數學教學現場,其實蠻具有提醒的功用,非常值得我們注意。
以上,我針對柏拉圖 vs.
亞里斯多德在(數學)認識論(epistemology)上的歧異,做了一點起碼的釐清。我的目的之一,無非是想要指出:儘管華德福的教育實驗,是基於他們首重靈性活動的教育哲學,然而,無論他們的認識論是否完備,甚至是否可以讓本書內容來佐證,從教育的所謂成效來看,其實都無關宏旨。這是因為如果第七、八年級階段的數學教育理想,是希望幫助學生體會數學(美)無所不在,從而通過模式(pattern)的掌握來學習它如何有用,那麼,本書內容就可以在我們的學校課程中,佔有一席之地了。
這麼說來,我們又將如何善用本書呢?為了要好好地感受數學那種令人無比驚奇的美,我強烈建議讀者好好地跟隨作者,做那五十八道練習。同時,我也希望讀者好好品味本書插圖,尤其是學生的作品,更是我們老師鼓勵學生在解題之外,應該著力的數學知識活動之範例。總之,本書是一本「另類的」數學普及作品,如果你也能運用另類的眼光來看待它,那麼,你就會有意想不到的收穫。
本文作者為臺灣師範大學數學系退休教授
推薦序
孫文先
為數學教育提供一條新路
英國數學家羅素(Bertrand Russell, 1872-1970)曾經說:「數學,如果正確地看,它不但擁有真理,而且也具有至高的美……。」更有許多數學家讚嘆數學具有簡潔性、和諧性、奇異性的美,它們以數學的符號美、抽象美、統一美、和諧美、對稱美、形式美、有限美、奇異美、神祕美、常數美等形式體現出來。義大利數學及物理學家伽利略(Galileo Galilei,
1564-1642)也曾經說過:「數學是上帝用來書寫宇宙的文字……它的符號是一些三角形、圓形等幾何圖形,沒有藉諸它們的幫助,我們就不可能理解任何一個字。」意即在宇宙、自然界、日常生活與動植物行為中,處處都存在著數學的蹤跡。
但是在我國的數學課堂中,傳授的內容幾乎只是有名無實的抽象概念、煩悶的計算與公式,老師的講課也是一道題目接著一道題目的解題,只期望學生能在各類型的考試中取得好成績。鮮有老師會花點時間告訴學生:巴特農神殿、人體上的黃金比;葉子在莖上以夾角為137°28” 的黃金角排列,這樣使得通風、採光最好;花瓣的數量通常是3, 5, 8, 13,
21……的斐波那契數,而斐波那契數列前後兩項比趨近於黃金比;蜂房的構造之夾角為 109°28” 與 70°32’,這是最省材料的結構;飛雁飛行成人字形,一邊與其飛行方向夾角是 54°4”8’,這是阻力最小的飛行方式。老師們也很少提及:雅格布伯努利(Jakob Bernoulli,
1654-1705)所謂「雖然改變了,我仍然和原來一樣」的對數螺線;內接於圓的四邊形中,以正方形面積最大,但內接於球的六面體中,體積最大的不是正六面體,而其他面數的多面體都是以正的多面體體積最大;萊布尼茲藉由中國的易經的啟發,發展二進制,成為現代科學、計算機、密碼學等研究的重要工具;德國醫生發現人體潮汐現象、體力週期23天、情緒週期28天、智力週期33天,它們都呈現正弦曲線的變化。更幾乎沒有老師願意利用課堂或課餘時間,指導學生繪製或摺疊正多面體模型。在這樣的教學風氣下,無怪乎我們的學童徒具數學解題知識,而空間想像能力匱乏、動手操作能力笨拙、美學素養貧瘠。
一位好的數學老師要教導學生獲得未來生活上必需的基本計算技巧、思辨能力與時空概念。一位好的數學老師不僅要傳授數學知識與理論,還要講出數學的魅力與樂趣。他應該引導學生們欣賞數學之美,讓他們嚐嚐數學家苦思不解的滋味與解決難題時瞬間迸發的喜悅,啟發學生的想像力,並使他們願意從事及渴望從事長期的科研工作。本書各章節提供許多活動與實作素材,使學生實際觸摸、感受、領悟與推廣許多重要的數學內涵。
很多人可能會質疑如果拿課堂寶貴的時間來做這些看似無益於提高考試分數的活動,對學習數學真的有幫助嗎?在此我要提出九章數學俱樂部的實際經驗與大家分享。聚會時我們從來不教數學解題,而是開拓學員的視野,養成學員自學的態度、動手的習慣、追根究柢的精神。經歷多年來的實踐,九章數學俱樂部的學員不僅在各項考試中都能名列前茅,由於他們長期浸淫在創新的思維中,他們在各領域的學術研究中也都是佼佼者。所以採用本書作者所引領的方式教學,不僅不會使課堂沉悶乏味,更能激發學生探索的精神,可誘導出學生特殊的才藝,建立其自信心,考試分數也自然提升不少,同時分組活動也可培養團隊合作的情誼。
很榮幸洪萬生老師帶領幾位中學數學老師中譯此書,本書是作者從二十多年的教學材料中摘錄成書,尚有許多有趣的數學活動內容可以再添入,希望在職的數學老師們模仿本書作者的教學理念,為本書疊磚添瓦。再者,現今電腦科技發達,許多動態繪畫軟體,如Geometer’s Sketchpad、Cabri 3D
等,提供幾何作圖的方便性與準確性,再加上強大的著色與動態功能,必定可使繪製的作品繽紛璀璨,希望懂得操作電腦的讀者可將本書發揚光大。當現今大家在高唱翻轉教育之際,本書為數學教育提供一條新路。
本文作者為財團法人臺北市九章數學教育基金會董事長