內容簡介

本書由五部分組成:推薦系統的技術、評估、應用、人機交互及高級話題。
第一部分展示了如今構建推薦系統的流行和基礎的技術,如協同過濾、基於語義的方法、數據挖掘方法和基於情境感知的方法。
第二部分主要關注離線和真實用戶環境下用於評估推薦質量的技術及方法。
第三部分包括了一些推薦技術多樣性的應用。首先簡述了與工業實現和推薦系統開發相關的一般性問題,隨後詳細介紹了推薦系統在各領域中的應用:音樂、學習、移動、社交網路及它們之間的交互。
第四部分包含了探討一系列問題的文章,這些問題包括推薦的展示、瀏覽、解釋和視覺化以及人工決策與推薦系統相關的重要問題。
第五部分收集了一些關於高級話題的文章,例如利用主動學習技術來引導新知識的學習,構建能夠抵擋惡意用戶攻擊的健壯推薦系統的合適技術,以及結合多種用戶反饋和偏好來生成更加可靠的推薦系統。



 

作者介紹

法蘭西斯科·裡奇(Francesco Ricci),義大利博爾紮諾自由大學電腦科學副教授。目前他的研究興趣包括推薦系統、智慧介面、移動系統、機器學習、案例推理、資訊和通信技術在旅遊中的應用。他是《Journal of Information Technology and Tourism》雜誌的編委,還是ACM和IEEE會員。他還是ACM會議推薦系統分會的指導委員會成員。
 
利奧·羅卡奇(Lior Rokach),以色列本-古裡安大學資訊系統工程系助理教授。他是智慧資訊系統方面公認的專家,在這一領域處於領先地位。他的主要研究領域包括資料採擷、模式識別和推薦系統。他的70篇論文被主流期刊、會議和書籍等引用。
 
布拉哈·夏皮拉(Bracha Shapira),以色列本-古裡安大學資訊系統工程系助理教授。目前她的研究興趣包括推薦系統、資訊檢索、個性化、使用者建模和社交網路。她是本-古裡安大學德國電信實驗室研究專案負責人,並且還是ACM和IEEE會員。
 

目錄

出版者的话
推荐序一
推荐序二
推荐序三
译者序
前言
译者简介

第1章 推荐系统:简介和挑战1
 1.1 简介1
 1.2 推荐系统的功能3
 1.3 数据和知识来源5
 1.4 推荐技术7
 1.5 推荐系统评估10
 1.6 推荐系统应用11
 1.7 推荐系统与人机交互13
 1.8 高级话题14
 1.9 挑战16
  1.9.1 偏好获取与分析16
  1.9.2 交互17
  1.9.3 新的推荐任务18
 参考文献19

第一部分 推荐系统技术
第2章 基于邻域的推荐方法综述24
 2.1 简介24
  2.1.1 基于邻域方法的优势25
  2.1.2 目标和概要26
 2.2 问题定义和符号26
 2.3 基于邻域的推荐27
  2.3.1 基于用户的评分预测28
  2.3.2 基于用户的分类预测方法28
  2.3.3 回归与分类29
  2.3.4 基于物品的推荐29
  2.3.5 基于用户和基于物品的推荐方法的比较30
 2.4 基于邻域方法的要素31
  2.4.1 评分标准化31
  2.4.2 相似度权重的计算33
  2.4.3 邻域的选择37
 2.5 高级进阶技术37
  2.5.1 基于图的方法38
  2.5.2 基于学习的方法40
 2.6 总结44
 参考文献44
第3章 协同过滤方法进阶48
 3.1 简介48
 3.2 预备知识49
  3.2.1 基准预测49
  3.2.2 Netflix数据50
  3.2.3 隐式反馈51
 3.3 矩阵分解模型51
  3.3.1 SVD52
  3.3.2 SVD++53
  3.3.3 时间敏感的因子模型54
  3.3.4 比较57
  3.3.5 小结58
 3.4 基于邻域的模型59
  3.4.1 相似度度量59
  3.4.2 基于相似度的插值60
  3.4.3 联合派生插值权重61
  3.4.4 小结63
 3.5 增强的基于邻域的模型63
  3.5.1 全局化的邻域模型64
  3.5.2 因式分解的邻域模型67
  3.5.3 基于邻域模型的动态时序71
  3.5.4 小结72
 3.6 基于邻域的模型和因子分解模型的比较73
 参考文献75
第4章 基于内容的语义感知推荐系统77
 4.1 简介77
 4.2 基于内容的推荐系统概述77
  4.2.1 基于关键词的向量空间模型79
  4.2.2 用户特征学习的方法80
  4.2.3 基于内容过滤的优缺点81
 4.3 自上而下的语义方法82
  4.3.1 基于本体资源的方法83
  4.3.2 基于非结构化或半结构化百科知识的方法84
  4.3.3 基于关联开放数据的方法86
 4.4 自下而上的语义方法90
  4.4.1 基于判别式模型的方法90
 4.5 方法比较与小结94
 4.6 总结与未来挑战95
 致谢96
 参考文献96
第5章 基于约束的推荐系统103
 5.1 简介103
 5.2 推荐知识库的开发105
 5.3 推荐过程中的用户导向作用108
 5.4 计算推荐结果113
 5.5 实际应用的经验114
 5.6 未来的研究方法116
 5.7 总结118
 参考文献118
第6章 情境感知推荐系统123
 6.1 简介和动机123
 6.2 推荐系统中的情境124
  6.2.1 什么是情境124
  6.2.2 推荐系统中模型化情境信息的表征性方法125
  6.2.3 推荐系统中主要的情境信息建模方法127
  6.2.4 获取情境信息130
 6.3 结合具有代表性情境的推荐系统范式131
  6.3.1 情境预过滤133
  6.3.2 情境后过滤136
  6.3.3 情境建模137
 6.4 讨论和总结138
 致谢140
 参考文献140
第7章 推荐系统中的数据挖掘方法145
 7.1 简介145
 7.2 数据预处理146
  7.2.1 相似度度量方法146
  7.2.2 抽样147
  7.2.3 降维148
  7.2.4 去噪150
 7.3 监督学习150
  7.3.1 分类150
  7.3.2 分类器的集成157
  7.3.3 评估分类器157
 7.4 无监督学习159
  7.4.1 聚类分析159
  7.4.2 关联规则挖掘161
 7.5 总结162
 参考文献163

第二部分 推荐系统评估
第8章 推荐系统的评估170
 8.1 简介170
 8.2 实验设置171
  8.2.1 离线实验172
  8.2.2 用户调查173
  8.2.3 在线评估175
  8.2.4 得出可靠结论176
 8.3 推荐系统属性178
  8.3.1 用户偏好179
  8.3.2 预测精度179
  8.3.3 覆盖率186
  8.3.4 置信度187
  8.3.5 信任度188
  8.3.6 新颖性188
  8.3.7 惊喜度189
  8.3.8 多样性190
  8.3.9 效用191
  8.3.10 风险191
  8.3.11 健壮性192
  8.3.12 隐私192
  8.3.13 适应性193
  8.3.14 可扩展性193
 8.4 结论193
 参考文献194
第9章 使用用户实验评估推荐系统198
 9.1 简介198
 9.2 理论基础与现有工作199
  9.2.1 理论基础:Knijnenburg等人提出的评估框架199
  9.2.2 现有以用户为中心的研究概览以及有前景的方向201
 9.3 实践指南203
  9.3.1 研究模型203
  9.3.2 参与者206
  9.3.3 实验操控207
  9.3.4 测量209
  9.3.5 统计评估214
 9.4 结论219
 参考文献221
第10章 对推荐结果的解释:设计和评估228
 10.1 简介228
 10.2 推荐设计的呈现和交互229
  10.2.1 推荐呈现229
網路書店 類別 折扣 價格
  1. 新書
    87
    $726