本書為著名物理學家吳大猷先生的著述《理論物理》(共七冊)的第一冊。《理論物理》是作者根據長期從事教學實踐編寫的一部比較系統全面的大學物理教材。本冊分甲部(Lagrangian動力學)和乙部(Hamiltonian動力學)兩部分。甲部內容共分12章︰第1、2章講述初等動力學的基本概念和基本原理;第3章講述Lagrange方程式;第4~第11章分別講述Lagrange方程式對各種力學系統的應用;第12章講述Gauss-Hertz及Appell原理。乙部內容共分8章︰第-1章講述變分法;第2章講述Hamilton原理與最小作用量原理;第3、4章講述Hamilton正則方程式和正則變換;第5章講述古典力學中的時間可逆性;第6章講述Hamilton-Jacobi理論;第7章講述角與作用量變數,緩漸不變性;第8章講述力學與光學。本書在大多數章節後附有習題,以供讀者研討和學習。
本書根據中國台灣聯經出版事業公司出版的原書翻印出版。作者對原書作了部分更正,李政道教授為本書的出版寫了序言,我們對原書中一些印刷錯誤也作了訂正。
本書可供高等院校物理系師生教學參考,也可供相關專業的研究生閱讀。
目錄
序言
總序
甲部 Lagrangian動力學
第1章 初等動力學大綱
1.1 引言
1.2 基本概念
1.2.1 時間、空間、速度與加速度
1.2.2 質量、力及動量
1.3 牛頓運動定律
1.4 功、動能與位能
1.5 守恆定理及Hamiltonian函數對時、空位移的不變性
1.6 Galileo-Newtonian相對性原理
1.7 轉動坐標系統與Coriolis定理
1.8 剛體的轉動
習題
第2章 虛功原理;d’Alembert原理
2.1 虛功原理
2.2 d’Alembert原理
習題
第3章 Lagrange方程式
3.1 廣義坐標
3.2 Lagrange方程式之推導
3.3 Lagrange方程式之首次積分︰循環坐標
3.4 Lagrange方程式之首次積分︰能量原理
3.5 借首次積分降低Lagrange方程式的階次︰Routh函數
習題
第4章 Lagrange方程式︰含循環坐標之系統
4.1 循環坐標系統
4.2 等循環坐標系統
4.3 緩漸運動
第5章 Lagrange方程式︰轉動坐標系統
5.1 Coriolis及輸運加速度
5.2 相對地球之運動
5.3 Larmor定理
習題
第6章 Lagrange方程式︰微小振動
6.1 微小振動的普遍理論
6.2 三角形YX2系統之簡正振動
6.3 簡正振動問題之矩陣解法
習題
第7章 Lagrange方程式︰剛體動力學
7.1 運動學的參數
7.1.1 Euler參數
7.1.2 Dayley—Klein參數
7.1.3 Euler角
7.1.4 Euler的運動關系式
7.2 Euler的剛體動力學方程式
7.3 無外力作用之剛體(繞固定點)轉動︰對稱陀螺
7.3.1 剛體自由轉動的離心力矩
7.3.2 能量及角動量積分
7.3.3 以Euler角表示的運動方程式
7.3.4 無力場下之對稱陀螺(Euler陀螺)
7.3.5 特殊情形
7.4 重力場中的對稱陀螺(Lagrange陀螺)
7.5 Foucault回轉器
7.5.1 陀螺之軸被限制于子午面內運動
7.5.2 回轉羅盤
7.6 Kowalevski陀螺
附錄一︰有一固定點之剛體運動方程式之解
附錄二︰最後乘因數
習題
第8章 Imgrange方程式︰回轉力
8.1 回轉力
8.2 廣義“回轉力”
8.2.1 由循環坐標引起的回轉力
8.2.2 由坐標系轉動所引起的回轉力
8.2.3 由變化的約束條件所產生的回轉力
8.2.4 對穩定運動之微小振動
8.2.5 在約束下之微小振蕩
第9章 Lagrange方程式︰電流
9.1 作用于電路上之機械力
9.2 電流之感應
9.3 電容器之放電
9.4 網路理論︰具有約束條件之Lagrange方程式
習題
第10章 Lagrange方程式︰非完全系統
10.1 非完全系統之Lagra。nge方程式
10.2 例題︰粗糙面上圓盤之滾動
10.3 粗糙面上圓盤之滾動︰Appell方法
10.4 第1節之方法2)對完全系統之推廣
第11章 Lagrange方程式︰準坐標;相對論力學;電磁場
11.1 準坐標
11.2 相對論力學
11.3 電磁場
第12章 GaUSS-Hertz及Appell原理
12.1 最小曲度原理(GaLISS及Hertz原理)
12.2 Appell的運動方程式
12.3 最小曲度原理與Appell方程式之關系
參考文獻
乙部 Hamiltonian動力學
導言
第1章 變分法
1.1 定義
1.2 Euler方程式
1.3 變分問題的另一形式
1.4 Hilbert氏的“獨立積分”S
1.5 最小值的必需及充足條件
習題
第2章 Hamilton原理與最小作用量原理
2.1 Hamilton原理
2.2 最小作用量原理
2.3 Helmholtz變分原理
習題
第3章 Hamilton正則方程式
3.1 正則方程式與Lagrange方程式的演繹關系;Legendre變換
3.2 正則方程式與Hamilton原理之演繹關系
3.3 正則方程式的積分
習題
第4章 正則變換
4.1 正則變換之定義
4.1.1 S=S(q,Q,t)
4.1.2 S’=S’(q,P,t)
4.1.3 S”=s”(Q,p,t)
4.1.4 S”’=s”’(P,p,t)
4.2 一個動力系統的運動與連續展開的正則變換
4.3 Poincar6絕對積分不變量,Liouville方程式
4.4 相對積分不變量
4.5 Lagrange括號、Poisson括號與Poisson定理
4.5.1 Lagrange括號之定義
4.5.2 Poisson括號
4.5.3 Poisson定理
4.6 正則變換之群性
4.7 正則變數t與-E
習題
第5章 古典力學中的時間可逆性
5.1 時間的觀念,“時矢”
5.2 時間的逆轉視作正則變換
習題
第6章 Hamilton-Jacobi理論
6.1 Hamilton—Jacobi理論
6.2 Hamilton函數與時間無關的動力系統
6.3 具有循環坐標的動力系統
6.4 Hamilton力學的變換理論
習題
第7章 角與作用量變數,緩漸不變性
7.1 單一周期系統、角與作用量變數
7.1.1 秤動
7.1.2 轉動
7.2 緩漸不變性原理
7.3 可分離的多重周期系統
7.3.1 非簡並系統(nondegenerate systems)
7.3.2 簡並系統(degenerate systems)
第8章 力學與光學
8.1 波及線光學(或物理及幾何光學)
8.2 幾何光學︰反射及折射定律
8.3 力學與光學︰Hamilton,de Broglie與SchrSdinger
參考文獻
索引
總序
甲部 Lagrangian動力學
第1章 初等動力學大綱
1.1 引言
1.2 基本概念
1.2.1 時間、空間、速度與加速度
1.2.2 質量、力及動量
1.3 牛頓運動定律
1.4 功、動能與位能
1.5 守恆定理及Hamiltonian函數對時、空位移的不變性
1.6 Galileo-Newtonian相對性原理
1.7 轉動坐標系統與Coriolis定理
1.8 剛體的轉動
習題
第2章 虛功原理;d’Alembert原理
2.1 虛功原理
2.2 d’Alembert原理
習題
第3章 Lagrange方程式
3.1 廣義坐標
3.2 Lagrange方程式之推導
3.3 Lagrange方程式之首次積分︰循環坐標
3.4 Lagrange方程式之首次積分︰能量原理
3.5 借首次積分降低Lagrange方程式的階次︰Routh函數
習題
第4章 Lagrange方程式︰含循環坐標之系統
4.1 循環坐標系統
4.2 等循環坐標系統
4.3 緩漸運動
第5章 Lagrange方程式︰轉動坐標系統
5.1 Coriolis及輸運加速度
5.2 相對地球之運動
5.3 Larmor定理
習題
第6章 Lagrange方程式︰微小振動
6.1 微小振動的普遍理論
6.2 三角形YX2系統之簡正振動
6.3 簡正振動問題之矩陣解法
習題
第7章 Lagrange方程式︰剛體動力學
7.1 運動學的參數
7.1.1 Euler參數
7.1.2 Dayley—Klein參數
7.1.3 Euler角
7.1.4 Euler的運動關系式
7.2 Euler的剛體動力學方程式
7.3 無外力作用之剛體(繞固定點)轉動︰對稱陀螺
7.3.1 剛體自由轉動的離心力矩
7.3.2 能量及角動量積分
7.3.3 以Euler角表示的運動方程式
7.3.4 無力場下之對稱陀螺(Euler陀螺)
7.3.5 特殊情形
7.4 重力場中的對稱陀螺(Lagrange陀螺)
7.5 Foucault回轉器
7.5.1 陀螺之軸被限制于子午面內運動
7.5.2 回轉羅盤
7.6 Kowalevski陀螺
附錄一︰有一固定點之剛體運動方程式之解
附錄二︰最後乘因數
習題
第8章 Imgrange方程式︰回轉力
8.1 回轉力
8.2 廣義“回轉力”
8.2.1 由循環坐標引起的回轉力
8.2.2 由坐標系轉動所引起的回轉力
8.2.3 由變化的約束條件所產生的回轉力
8.2.4 對穩定運動之微小振動
8.2.5 在約束下之微小振蕩
第9章 Lagrange方程式︰電流
9.1 作用于電路上之機械力
9.2 電流之感應
9.3 電容器之放電
9.4 網路理論︰具有約束條件之Lagrange方程式
習題
第10章 Lagrange方程式︰非完全系統
10.1 非完全系統之Lagra。nge方程式
10.2 例題︰粗糙面上圓盤之滾動
10.3 粗糙面上圓盤之滾動︰Appell方法
10.4 第1節之方法2)對完全系統之推廣
第11章 Lagrange方程式︰準坐標;相對論力學;電磁場
11.1 準坐標
11.2 相對論力學
11.3 電磁場
第12章 GaUSS-Hertz及Appell原理
12.1 最小曲度原理(GaLISS及Hertz原理)
12.2 Appell的運動方程式
12.3 最小曲度原理與Appell方程式之關系
參考文獻
乙部 Hamiltonian動力學
導言
第1章 變分法
1.1 定義
1.2 Euler方程式
1.3 變分問題的另一形式
1.4 Hilbert氏的“獨立積分”S
1.5 最小值的必需及充足條件
習題
第2章 Hamilton原理與最小作用量原理
2.1 Hamilton原理
2.2 最小作用量原理
2.3 Helmholtz變分原理
習題
第3章 Hamilton正則方程式
3.1 正則方程式與Lagrange方程式的演繹關系;Legendre變換
3.2 正則方程式與Hamilton原理之演繹關系
3.3 正則方程式的積分
習題
第4章 正則變換
4.1 正則變換之定義
4.1.1 S=S(q,Q,t)
4.1.2 S’=S’(q,P,t)
4.1.3 S”=s”(Q,p,t)
4.1.4 S”’=s”’(P,p,t)
4.2 一個動力系統的運動與連續展開的正則變換
4.3 Poincar6絕對積分不變量,Liouville方程式
4.4 相對積分不變量
4.5 Lagrange括號、Poisson括號與Poisson定理
4.5.1 Lagrange括號之定義
4.5.2 Poisson括號
4.5.3 Poisson定理
4.6 正則變換之群性
4.7 正則變數t與-E
習題
第5章 古典力學中的時間可逆性
5.1 時間的觀念,“時矢”
5.2 時間的逆轉視作正則變換
習題
第6章 Hamilton-Jacobi理論
6.1 Hamilton—Jacobi理論
6.2 Hamilton函數與時間無關的動力系統
6.3 具有循環坐標的動力系統
6.4 Hamilton力學的變換理論
習題
第7章 角與作用量變數,緩漸不變性
7.1 單一周期系統、角與作用量變數
7.1.1 秤動
7.1.2 轉動
7.2 緩漸不變性原理
7.3 可分離的多重周期系統
7.3.1 非簡並系統(nondegenerate systems)
7.3.2 簡並系統(degenerate systems)
第8章 力學與光學
8.1 波及線光學(或物理及幾何光學)
8.2 幾何光學︰反射及折射定律
8.3 力學與光學︰Hamilton,de Broglie與SchrSdinger
參考文獻
索引
序
吳大猷先生是國際著名的學者,在中國物理界,是和嚴濟慈、周培源、趙忠堯諸教授同時的老前輩他的這一部《理論物理》,包括了“古典”至“近代”物理的全貌1977年初,在中國台灣陸續印出。這幾年來對該省和東南亞的物理教學界起了很大的影響,現在中國科學院,特別是由于盧嘉錫院長和錢三強、嚴東生副院長的支持,決定翻印出版,使全國對物理有興趣者,都可以閱讀參考。
看到了這部巨著,聯想起在1945年春天,我初次在昆明遇見吳老師,很幸運地得到他在課內和課外的指導,從“古典力學”學習起至“量子力學”,其經過就相當于念吳老師的這套叢書,由第一冊開始,直至第七冊在昆明的這一段時期是我一生學物理過程中的大關鍵,因為有了扎實的根基,使我在1946年秋入芝加哥大學,可立刻參加研究院的工作。
1933年吳老師得密歇根大學的博士學位後,先留校繼續研究一年。翌年秋回國在北大任教,當時他的學生中有馬仕俊、郭永懷、馬大猷、虞福春等,後均致力物理研究有成。抗戰期間,吳老師隨北大加入西南聯大。這一段時期的生活是相當艱苦的,但是中國的學術界,還是培養和訓練了很多優秀青年。下面的幾段是錄自吳老師的《早期中國物理發展之回憶》一書︰
“組成西南聯大的三個學校,各有不同的歷史。……北京大學規模雖大,資望也高,但在抗戰時期中,除了有很小數目的款,維持一個‘北京大學辦事處’外,沒有任何經費作任何研究工作的。在抗戰開始時,我的看法是以為應該為全面抗戰,節省一切的開支,研究工作也可以等戰後再作。但抗戰久了,我的看法便改變了,我漸覺得為了維持從事研究者的精神,不能讓他們長期地感到無法工作的苦悶,為了培植及訓練戰後恢復研究工作所需的人才,應該在可能情形下,有些研究設備。西南聯大沒有此項經費,北大也無另款。……我知道只好盡自己個人的力量做一點點工作了,……請北大在崗頭村租了一所泥牆泥地的房子做實驗室,找一位助教,幫著我把三稜柱放在木制架上拼成一個最原始形的分光儀,試著做些‘拉曼效應’的工作”。
“我想在二十世紀,在任何實驗室,不會找到一個拿三稜柱放在木架上做成的分光儀的了我們用了許多腦筋,得了一些結果。……”
“1941年秋,有一位燕京大學畢業的黃昆,要來北大當研究生隨我工作,他是一位優秀的青年,我接受了他,讓他半時作研究生,半時作助教,可以得些收入,那年上學期我授‘古典力學’,下學期授‘量子力學’。班里優秀學生如楊振寧、黃昆、黃授書、張守廉等可以說是一個從不易見的群英會……”
“1945年日本投降前,是生活最困難的時期。每月發薪,紙幣滿箱。因為物價飛躍,所以除了留些做買菜所需外,大家都立刻拿去買了不易壞的東西,如米、炭等。……我可能是教授中最先擺地攤的,……抗戰初年,托人由香港、上海帶來的較好的東西,陸續地都賣去了。等到1946年春復員離昆明時s我和冠世的東西兩個手提箱便足夠裝了。”
就在1946年春,離昆明前吳老師還特為了我們一些學生,在課外另加工講授“近代物理”和“量子力學”。當時听講的除我以外i有朱光亞、唐敖慶、王瑞甄和孫本旺。
在昆明時,吳老師為了北京大學的四十周年紀念,寫了《多原分子的結構及其振動光譜》一書,于1940年出版。這本名著四十多年來至今還是全世界各研究院在這領域中的標準手冊。今年正好是中國物理學會成立的五十周年,科學出版社翻印出版吳大猷教授的《理論物理》全書,實在是整個物理界的一大喜事。
看到了這部巨著,聯想起在1945年春天,我初次在昆明遇見吳老師,很幸運地得到他在課內和課外的指導,從“古典力學”學習起至“量子力學”,其經過就相當于念吳老師的這套叢書,由第一冊開始,直至第七冊在昆明的這一段時期是我一生學物理過程中的大關鍵,因為有了扎實的根基,使我在1946年秋入芝加哥大學,可立刻參加研究院的工作。
1933年吳老師得密歇根大學的博士學位後,先留校繼續研究一年。翌年秋回國在北大任教,當時他的學生中有馬仕俊、郭永懷、馬大猷、虞福春等,後均致力物理研究有成。抗戰期間,吳老師隨北大加入西南聯大。這一段時期的生活是相當艱苦的,但是中國的學術界,還是培養和訓練了很多優秀青年。下面的幾段是錄自吳老師的《早期中國物理發展之回憶》一書︰
“組成西南聯大的三個學校,各有不同的歷史。……北京大學規模雖大,資望也高,但在抗戰時期中,除了有很小數目的款,維持一個‘北京大學辦事處’外,沒有任何經費作任何研究工作的。在抗戰開始時,我的看法是以為應該為全面抗戰,節省一切的開支,研究工作也可以等戰後再作。但抗戰久了,我的看法便改變了,我漸覺得為了維持從事研究者的精神,不能讓他們長期地感到無法工作的苦悶,為了培植及訓練戰後恢復研究工作所需的人才,應該在可能情形下,有些研究設備。西南聯大沒有此項經費,北大也無另款。……我知道只好盡自己個人的力量做一點點工作了,……請北大在崗頭村租了一所泥牆泥地的房子做實驗室,找一位助教,幫著我把三稜柱放在木制架上拼成一個最原始形的分光儀,試著做些‘拉曼效應’的工作”。
“我想在二十世紀,在任何實驗室,不會找到一個拿三稜柱放在木架上做成的分光儀的了我們用了許多腦筋,得了一些結果。……”
“1941年秋,有一位燕京大學畢業的黃昆,要來北大當研究生隨我工作,他是一位優秀的青年,我接受了他,讓他半時作研究生,半時作助教,可以得些收入,那年上學期我授‘古典力學’,下學期授‘量子力學’。班里優秀學生如楊振寧、黃昆、黃授書、張守廉等可以說是一個從不易見的群英會……”
“1945年日本投降前,是生活最困難的時期。每月發薪,紙幣滿箱。因為物價飛躍,所以除了留些做買菜所需外,大家都立刻拿去買了不易壞的東西,如米、炭等。……我可能是教授中最先擺地攤的,……抗戰初年,托人由香港、上海帶來的較好的東西,陸續地都賣去了。等到1946年春復員離昆明時s我和冠世的東西兩個手提箱便足夠裝了。”
就在1946年春,離昆明前吳老師還特為了我們一些學生,在課外另加工講授“近代物理”和“量子力學”。當時听講的除我以外i有朱光亞、唐敖慶、王瑞甄和孫本旺。
在昆明時,吳老師為了北京大學的四十周年紀念,寫了《多原分子的結構及其振動光譜》一書,于1940年出版。這本名著四十多年來至今還是全世界各研究院在這領域中的標準手冊。今年正好是中國物理學會成立的五十周年,科學出版社翻印出版吳大猷教授的《理論物理》全書,實在是整個物理界的一大喜事。
網路書店
類別
折扣
價格
-
新書87折$292