推薦序
我看《小小數學博物館》
文/美國印地安納州普度大學數學哲學博士、台大數學系退休教授 黃敏晃
小孩對外界總是有許多疑惑,大人也不容易回答得清楚。三十年前,我們的小孩上小學時,台灣有套兒童讀物《十萬個為什麼?》代我回答了很多非數學的問題。數學方面的問題我當然親自上陣處理,所以曾經有朋友請我寫本數學方面的為什麼,但因某種原因並未進行。
這本書就是這方面的讀物,作者是德國基森的「數學博物館」的館長——阿爾貝希特‧波依許巴赫。他把許多訪客所提的數學問題中,比較單純大眾化的(專業性強的問題當然沒列入)回答,共101則,整理後出版了這本書。
數學內容討論的材料是數、量、形和關係,所以問題和回答都會有點抽象、形式。
書中的數學問題依性質可分成幾種類型,舉例說明如下:
(1)學習型的,如 + 為什麼是 ,而不是 ?為什麼不能除以0?為什麼要背九九乘法表?
這類問題通常在釐清問題的本質,和所牽涉數學物件的意義後,就能講清楚。
(2)存在形式的,如計算樂透中獎的神祕公式嗎?有計算出質數的公式嗎?每個方程式都有解嗎?真的有四維空間嗎?
存在性和唯一性常是數學討論的重點,因為數學家認為討論不存在的事物沒有意義,前兩個問題的答案是否定的,許多人太高估了數學的功能,以為數學總能提供公式解決難題,但這種靈丹其實並不存在。至於方程式的解和四維空間的存在,則會出乎許多讀者的意料之外。
無理數的出現(也可以說是其存在的證明)是數學上有名的故事。在畢氏定定理被證明之前,畢達哥拉斯學派是一個興盛的宗教型學派,信徒捐出所有財產,聚居在某些封閉會所,不和外人往來,會眾大多無法辨識每個人,還要互考能否用尺規作圖方式,畫出五芒星,亦即正五邊形五條對角線形成的圖形,篤信「世界萬物的測量都可由自然數透過單純的運作(如加、減、乘、除、比例等)而得到」,如琴絃在某些自然數之比的長度處,可彈出不同的樂音,就是此派的貢獻。因此,他們常用分數,但在信仰上排斥了「無理數」(非自然數之比的實數)的存在。畢氏定理被證明之後,一個正方形的對角線長是其長邊的
倍,而 是無理數,此學派便因信仰崩潰而完全瓦解。
(3)某類數學物件是否無限多的問題,如:有無限多的數字嗎?到底有多少質數?有多少分數?有多少無理數?
這裡牽涉到的無限多,是數學裡所謂的最初級的無限多,意思和自然數一樣多,數都數不完(永遠有一個數比很大很大的數多1,因此沒有最大的自然數)。譬如說,質數有無限多的證明就是靠一樣的邏輯——有限就可以完整的羅列,但全部列出來後,我們總可以找到另一個質數,故質數的數目就有無限多了。
以及阿基里斯何時能趕上烏龜?的芝諾悖論等牽涉到無限次運作的事務。
人的生命有限,現代人雖不像古人那樣,人生七十古來稀,但也很少過百歲的人瑞。不管如何,人命有限,無法作無限多次運作。因此,牽涉到無限運作的事務是要另外界定的。
即其結果越來越接近1,所以,數學裡我們界定其結果就是1。
許多人不能接受這樣的說法,他們覺得0.999……就是比1小那麼一點點,這裡需要用到一點推論來說明了:如果0.999……是一個固定的數,那麼它應該多少呢?
顯然,它是比1大的數是不對的,而任何比1小的數也不行,因為只要我們取的位數夠多,它就會比這個數大,因此它只能是1。數學的定義常常是這樣子,是人為的,因為數學物件是人造的,而非像熊貓或芒果那樣是天然的。德國數學家Dedekin說過:「數學裡除了1、2、3……等自然數的概念外,其他物件都是數學家造出來的。」
數學家造出來的東西,其意義當然是他自己界定的。譬如說, 這個形式的符號,它代表什麼樣的數呢?
我們當然不能隨便亂定,而要回歸到次方的意義: 代表3個4相乘, 代表2個4相乘, 本來是沒有需要的符號(只有1個4,根本沒有相乘的可能),但看到 、 等的界定,把 定義成成4,可以讓下面的指數算則方便運作——若a和b是自然數
那麼, 要定義成怎麼樣的數,才能使上面的指數保持成立呢?答案是 =1。這樣的做法,就是數學裡的「規約觀點」(conventionsim)。讀者以後見多了,就不會覺得奇怪了。
其他問題筆者就不多談了,讀數學書時不能像小說那樣,順著劇情走,每逢難處就停下來想一想,若需要動筆計算也不要偷懶。因為數學家寫數學文章時,常覺得材料簡單,因此輕輕幾筆帶過,以為別人會跟他一樣清楚。
另外,本書的作者是德國人,書中難免帶著些許德國味道,譬如問題052:誰是德國最偉大的數學家?問題079提到的「希伯特問題」和問題055「希伯特旅館」中的希伯特,就是非常有名的德國數學家。讀者只要能夠了解這點,此書不失為很好的數學讀物。
台大數學系退休教授 黃敏晃
2014年10月20日
作者序
文/阿爾貝希特.波依特許巴赫
位於基森的「數學館」(Mathematikum)是一座數學的「互動式博物館」,從2002年開幕後每年都吸引15萬名左右的訪客,在館內150個展覽點,不管是解數學題、用肥皂泡泡作實驗或是探索自己身體的黃金比例,都讓大人小孩玩得不亦樂乎。經由這些活動每個人自然而然的發現數學,動動腦,試試看,進而學習數學知識及釐清數學概念。
雖然數學館沒有方程式和多項式,也很少提到數學史,也幾乎沒有文字說明,訪客卻在動手做的過程中驚喜連連,問題不斷。我自己常常被當面提問,除了面對面之外,有些人是透過電子郵件或甚至寫信。
大家的問題包羅萬象,有些是關於數學的本質:簽中一次大樂透的機會有多大?棋盤上會有多少粒米?「費馬最後定理」是什麼?
有些則是數學史的問題:「0」是什麼時候出現?為什麼諾貝爾獎沒有數學獎?什麼是「希伯特的問題」?
有些問題容易回答:一張A4紙有多大?13是不吉利的數字嗎?等於多少?
有些問題超難回答:凡事都可以證明嗎?一定要用公式嗎?為什麼負負得正?
有些問題已經超越數學領域:外星人能了解我們的數學嗎?我們可以證明上帝的存在嗎?為什麼數學家不會算術?
我竭盡所能的思考這些問題,並且把解答都寫在本書中,這些解答應該是正確的,因為都不是憑空想像的,而是以科學家的角度來探討和回答,並且力求簡單明瞭的說明,避免聽者不知所云,最後引來抱怨:「到底講什麼啊?」
當然不管是問題的選擇,或是解答的呈現都來自個人的主觀看法,有時候為了把解答說明得清楚具體,一針見血,我確實卯足全力。馮塔納(Theordor Fontane)在他的小說《Stechlin》中寫著:「無庸置疑的真相並不存在,即使有,也太無聊了。」這就是我寫這本書時的座右銘。
我希望書中解答了所有的問題,萬一讀者還有問題,而且相信我可以幫得上忙,
歡迎直接寫信給我:
[email protected]